当前位置: 首页>

参数方程x=sint+cost+2和y=sint-cost的标准方程和极坐标方程计算

主要内容:

本文通过三角函数公式以及直角坐标系和极坐标系知识,介绍已知参数方程x=sint+cost+2和y=sint-cost标准方程和极坐标方程的计算过程和步骤。

主要步骤:

※.标准方程解析

将参数方程变形移项可有:

sint+cost=x-2, 1sint-1cost=y参数方程平方有:

sin^2t+2sintcost+cos^2t=(x-2)^2,……(1)

sin^2t-2sintcost+2^2*cos^2t=y^2 ,…..(2)

两式子(1)、(2)相加为:

2sin^2t+2cos^2t=(x-2)^2+y^2,

由sin^2t+cos^2t=1,代入可得:

(x-2)^2+y^2=2,

可知该曲线方程是一个圆,圆心坐标为(2,0),圆的半径r=√2。

※.极坐标方程解析

根据极坐标与直角坐标系的关系,x=ρcosθ,y=ρsinθ,代入上述圆的标准方程有:

(ρcosθ-2)^2+ρ^2sin^2θ=2,

进一步化简有:

ρ^2cos^2θ-2*2ρcosθ+2^2+ρ^2sin^2θ=2,

ρ^2=4ρcosθ-2,

即为所求的极坐标方程。

本文来自网络,不代表 立场,转载请注明出处。